Question	Scheme	Marks	AOs
1(a)	h = 0.5	B1	1.1b
	$A \approx \frac{1}{2} \times \frac{1}{2} \left\{ 0.4805 + 1.9218 + 2 \left(0.8396 + 1.2069 + 1.5694 \right) \right\}$	M1	1.1b
	= 2.41	A1	1.1b
		(3)	
(b)	$\int (\ln x)^2 dx = x(\ln x)^2 - \int x \times \frac{2\ln x}{x} dx$	M1	3.1a
		A1	1.1b
	$= x(\ln x)^{2} - 2 \int \ln x dx = x(\ln x)^{2} - 2(x \ln x - \int dx)$	dM1	2.1
	$= x(\ln x)^{2} - 2 \int \ln x dx = x(\ln x)^{2} - 2x \ln x + 2x$	GIVII	2.1
	$\int_{2}^{4} (\ln x)^{2} dx = \left[x (\ln x)^{2} - 2x \ln x + 2x \right]_{2}^{4}$		
	$=4(\ln 4)^2-2\times 4\ln 4+2\times 4-\left(2(\ln 2)^2-2\times 2\ln 2+2\times 2\right)$	ddM1	2.1
	$=4(2\ln 2)^2-16\ln 2+8-2(\ln 2)^2+4\ln 2-4$		
	$=14(\ln 2)^2 -12\ln 2 + 4$	A1	1.1b
		(5)	

(a)

B1: Correct strip width. May be implied by $\frac{1}{2} \times \frac{1}{2} \{....\}$ or $\frac{1}{4} \times \{....\}$

M1: Correct application of the trapezium rule.

Look for $\frac{1}{2}$ × "h" $\{0.4805 + 1.9218 + 2(0.8396 + 1.2069 + 1.5694)\}$ condoning slips in the digits.

Notes

The bracketing must be correct but it is implied by awrt 2.41

A1: 2.41 only. This is not awrt

(h)

M1: Attempts parts the correct way round to achieve $\alpha x (\ln x)^2 - \beta \int \ln x \, dx$ o.e.

May be unsimplified (see scheme). Watch for candidates who know or learn $\int \ln x \, dx = x \ln x - x$ who may write $\int (\ln x)^2 \, dx = \int (\ln x)(\ln x) \, dx = \ln x(x \ln x - x) - \int \frac{x \ln x - x}{x} \, dx$

A1: Correct expression which may be unsimplified

dM1: Attempts parts again to (only condone coefficient errors) to achieve $\alpha x (\ln x)^2 - \beta x \ln x \pm \gamma x$ o.e.

ddM1: Applies the limits 4 and 2 to an expression of the form $\pm \alpha x (\ln x)^2 \pm \beta x \ln x \pm \gamma x$, subtracts and applies $\ln 4 = 2\ln 2$ at least once. Both M's must have been awarded

A1: Correct answer

.....

It is possible to do $\int (\ln x)^2 dx$ via a substitution $u = \ln x$ but it is very similar.

M1 A1, dM1:
$$\int u^2 e^u du = u^2 e^u - \int 2u e^u du = u^2 e^u - 2u e^u \pm 2e^u$$

ddM1: Applies appropriate limits and uses $\ln 4 = 2\ln 2$ at least once to an expression of the form $u^2 e^u - \beta u e^u \pm \gamma e^u$ Both M's must have been awarded

.....

Question	Scheme	Marks	AOs	
2	$\int x^3 \ln x dx = \frac{x^4}{4} \ln x - \int \frac{x^4}{4} \times \frac{1}{x} dx$	M1	1.1b	
	$= \frac{x^4}{4} \ln x - \frac{x^4}{16} (+c)$	M1 A1	1.1b 1.1b	
	$\int_{1}^{e^{2}} x^{3} \ln x dx = \left[\frac{x^{4}}{4} \ln x - \frac{x^{4}}{16} \right]_{1}^{e^{2}} = \left(\frac{e^{8}}{4} \ln e^{2} - \frac{e^{8}}{16} \right) - \left(-\frac{1^{4}}{16} \right)$	M1	2.1	
	$=\frac{7}{16}e^{8}+\frac{1}{16}$	A1	1.1b	
		(5)		
	(5 mar			

Notes:

M1: Integrates by parts the right way round.

Look for $kx^4 \ln x - \int kx^4 \times \frac{1}{x} dx$ o.e. with k > 0. Condone a missing dx

M1: Uses a correct method to integrate an expression of the form $\int kx^4 \times \frac{1}{x} dx \rightarrow c x^4$

A1:
$$\int x^3 \ln x \, dx = \frac{x^4}{4} \ln x - \frac{x^4}{16}$$
 (+ c) which may be left unsimplified

M1: Attempts to substitute 1 and e^2 into an expression of the form $\pm px^4 \ln x \pm qx^4$, subtracts and uses $\ln e^2 = 2$ (which may be implied).

A1: $\frac{7}{16}e^8 + \frac{1}{16}$ o.e. Allow $0.4375e^8 + 0.0625$ or uncancelled fractions. NOT ISW: $7e^8 + 1$ is A0

.....

You may see attempts where substitution has been attempted.

E.g.
$$u = \ln x \Rightarrow x = e^u$$
 and $\frac{dx}{du} = e^u$

M1: Attempts to integrate the correct way around condoning slips on the coefficients

$$\int x^{3} \ln x \, dx = \int e^{4u} u \, du = \frac{e^{4u}}{4} u - \int \frac{e^{4u}}{4} \, du$$

M1 A1:
$$\int x^3 \ln x \, dx = \frac{e^{4u}}{4} u - \frac{e^{4u}}{16} (+c)$$

M1 A1: Substitutes 0 and 2 into an expression of the form $\pm pue^{4u} \pm qe^{4u}$ and subtracts

.....

It is possible to use integration by parts "the other way around"

To do this, candidates need to know or use $\int \ln x \, dx = x \ln x - x$

FYI
$$I = \int x^3 \ln x \, dx = x^3 (x \ln x - x) - \int (x \ln x - x) \times 3x^2 \, dx = x^3 (x \ln x - x) - 3I + \frac{3}{4}x^4$$

Hence
$$4I = x^4 \ln x - \frac{1}{4}x^4 \Rightarrow I = \frac{1}{4}x^4 \ln x - \frac{1}{16}x^4$$

Score M1 for a full attempt at line 1 (condoning bracketing and coefficient slips) followed by M 1 for line 2 where terms in *I* o.e. to form the answer.